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Glimpses of  Chaos

It only looks random

Words are not living creatures; they cannot breathe, nor 
walk, nor become fond of one another. Yet, like the human 
beings whom they are destined to serve, they can lead 
unique lives. A word may be born into a language with just 
one meaning, but, as it grows up, it may acquire new mean-
ings that are related but nevertheless distinct.

Often these meanings are rather natural extensions 
of older ones. Early in our own lives we learn what “hot” 
and “cold” mean, but as we mature we discover that hot 
pursuit and cold comfort, or hot denials and cold receptions, 
are not substances or objects whose temperatures can be 
measured or estimated. In other instances the more recent 
meanings are specializations. We learn at an equally early 
age what “drink” means, but if later in life someone says to 
us, “You’ve been drinking,” we know that he is not suggesting 
that we have just downed a glass of orange juice. Indeed, if 
he tells someone else that we drink, he is probably implying 
not simply that we often consume alcoholic beverages, but 
that we drink enough to affect our health or behavior.

So it is with “chaos” – an ancient word originally 
denoting a complete lack of form or systematic arrange-
ment, but now often used to imply the absence of some 
kind of order that ought to be present. Not withstanding 

I’m afraid you have not enough 
chaos in you to make a world.

GEORGE WILLIAM RUSSEL, DISCUSSION WITH JAMES JOYCE (UNKNOWN)
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its age, this familiar word is not close to its deathbed, and 
it has recently outdone many other common words by 
acquiring several related but distinct technical meanings.

It is not surprising that, over the years, the term 
has often been used by various scientists to denote random-
ness of one sort or another. A recent example is provided 
by the penetrating book Order Out of Chaos, written by the 
Nobel Prize-winning physical chemist Ilya Prigogine and 
his colleague Isabelle Stengers. These authors deal with 
the manner in which many disorganized systems can spon-
taneously acquire organization, just as a shapeless liquid 
mass can, upon cooling, solidify into an exquisite crystal. 
A generation or two earlier, the mathematician Norbert 
Wiener would sometimes even pluralize the word, and 
would write about a chaos or several chaoses when refer-
ring to systems like the host of randomly located mole-
cules that form a gas, or the haphazardly arranged 
collection of water droplets that make up a cloud.

This usage persists, but, since the middle 1970s, 
the term has also appeared more and more frequently in 
the scientific literature in one or another of its recently 
acquired senses; one might well say that there are several 
newly named kinds of chaos. In this volume we shall be 
looking closely at one of them. There are numerous 
processes, such as the swinging of a pendulum in a clock, 
the tumbling of a rock down a mountainside, or the 
breaking of waves on an ocean shore, in which variations 
of some sort take place as time advances. Among these 
processes are some, perhaps including the rock and the 
waves but omitting the pendulum, whose variations are not 
random but look random. I shall use the term chaos to refer 
collectively to processes of this sort – ones that appear to 
proceed according to chance even though their behavior 
is in fact determined by precise laws. This usage is argu-

ably the one most often encountered in technical works 
today, and scientists writing about chaos in this sense no 
longer feel the need to say so explicitly.

In reading present-day accounts, we must keep in 
mind that one of the other new usages may be intended. 
Sometimes the phenomena being described are things that 
appear to have random arrangements in space rather than 
random progressions in time, like wildflowers dotting a 
field. On other occasions, the arrangements or progres-
sions are simply very intricate rather than seemingly 
random, like the pattern woven into an oriental rug. The 
situation is further complicated because several other 
terms, notably nonlinearity, complexity, and fractality, are 
often used more or less synonymously with chaos in one or 
several of its senses. In a later chapter I shall have a bit to 
say about these related expressions.

In his best-selling book Chaos: Making a New 
Science, which deals with chaos in several of its newer 
senses, James Gleick suggests that chaos theory may in 
time rival relativity and quantum mechanics in its influ-
ence on scientific thought. Whether or not such a prophecy 
comes true, the “new science” has without question jumped 
into the race with certain advantages. Systems that presum-
ably qualify as examples of chaos can very often be seen 
and appreciated without telescopes or  microscopes, and 
they can be recorded without time-lapse or high-speed 
cameras. Phenomena that are supposedly chaotic include 
simple everyday occurrences, like the falling of a leaf or 
the flapping of a flag, as well as much more involved 
processes, like the fluctuations of climate or even the 
course of life itself.

I have said “presumably” and “supposedly” because 
there is something about these phenomena that is not quite 
compatible with my description of chaos as something that 
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is random in appearance only. Tangible physical systems 
generally possess at least a small amount of true random-
ness. Even the seemingly regular swinging of the pendulum 
in a cuckoo clock may in reality be slightly disturbed by 
currents in the air or vibrations in the wall; these may in 
tum be produced by people moving about in a room or 
traffic passing down a nearby, street. If chaos consists of 
things that are actually not random and only seem to be, 
must it exclude familiar everyday phenomena that have a 
bit of randomness, and be confined to mathematical 
abstractions? Might not such a restriction severely diminish 
its universal significance?

An acceptable way to render the restriction unnec-
essary would be to stretch the definition of chaos to include 
phenomena that are slightly random, provided that their 
much greater apparent randomness is not a by-product of 
their slight true randomness. That is, real-world processes 
that appear to be behaving randomly – perhaps the falling 
leaf or the flapping flag – should be allowed to qualify as 
chaos, as long as they would continue to appear random 
even if any true randomness could somehow be eliminated.

In practice, it may be impossible to purge a real 
system of its actual randomness and observe the conse-
quences, but often we can guess what these would be by 
turning to theory. Most theoretical studies of real phenomena 
are studies of approximations. A scientist attempting to 
explain the motion of a simple swinging pendulum, which 
incidentally is not a chaotic system, is likely to neglect any 
extraneous random vibrations and air currents, leaving such 
considerations to the more practical engineer. 

Often he or she will even disregard the clockwork 
that keeps the pendulum swinging, and the internal fric-
tion that makes the clockwork necessary, along with 
anything else that is inconvenient. The resulting pencil-

and-paper system will be only a model, but one that is 
completely manageable. It seems appropriate to call a real 
physical system chaotic if a fairly realistic model, but one 
with the system’s inherent suppressed, still appears to 
behave randomly.

Pinba l l s  and But ter f l ie s

[…] According to the narrower definition of random-
ness, a random sequence of events is one in which anything 
that can ever happen can happen next. Usually it is also 
understood that the probability that a given event will 
happen next is the same as the probability that a like event 
will happen at any later time. A familiar example, often 
serving as a paradigm for randomness, is the toss of a coin. 
Here either heads or tails, the only two things that can ever 
happen, can happen next. If the process is indeed random, 
the probability of throwing heads on the next toss of any 
particular coin, whether 50 percent or something else, is 
precisely the same as that of throwing heads on any other 
toss of the same coin, and it will remain the same unless 
we toss the coin so violently that it is bent or worn out of 
shape. If we already know the probability, knowing in addi-
tion the outcome of the last toss cannot improve our 
chances of guessing the outcome of the next one correctly.

It is true that knowing the results of enough tosses 
of the same coin can suggest to us what the probability of 
heads is, for that coin, if we do not know it already. If after 
many tosses of the coin we become aware that heads has 
come up 55 percent of the time, we may suspect that the 
coin is biased, and that the probability has been, is, and 
will be 55 percent, rather than the 50 percent that we might 
have presupposed. 
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The coin is an example of complete randomness. It is the 
sort of randomness that one commonly has in mind when 
thinking of random numbers, or deciding to use a random-
number generator. According to the broader definition of 
randomness, a random sequence is simply one in which any 
one of several things can happen next, even though not 
necessarily anything that can ever happen can happen next. 
What actually is possible next will then depend upon what 
has just happened. An example, which, like tossing a coin, 
is intimately associated with games of chance, is the shuf-
fling of a deck of cards. The process is presumably random, 
because even if the shuffler should wish otherwise – for 
example, if on each riffle he planned to cut the deck exactly 
in the middle, and then allow a single card to fall on the 
table from one pile, followed by a single card from the 
other pile, etc. – he probably could not control the muscles 
in his fingers with sufficient precision to do so, unless he 
happened to be a virtuoso shuffler from a gaming estab-
lishment. Yet the process is not completely random, if by 
what happens next we mean the outcome of the next single 
riffle, since one riffle cannot change any given order of 
the cards in the deck to any other given order. In particular, 
a single riffle cannot completely reverse the order of the 
cards, although a sufficient number of successive riffles, 
of course, can produce any order.

A deterministic sequence is one in which only one 
thing can happen next; that is, its evolution is governed by 
precise laws. Randomness in the broader sense is therefore 
identical with the absence of determinism. It is this sort 
of randomness that I have intended in my description of 
chaos as something that looks random.

Tossing a coin and shuffling a deck are processes 
that take place in discrete steps-successive tosses or riffles. 
For quantities that vary continuously, such as the speed of 

a car on a highway, the concept of a next event appears to 
lose its meaning. Nevertheless, one can still define random-
ness in the broader sense, and say that it is present when 
more than one thing, such as more than one prespecified 
speed of a car, is possible at any specified future time. Here 
we may anticipate that the closer the future time is to the 
present, the narrower the range of possibilities – a car 
momentarily stopped in heavy traffic may be exceeding 
the speed limit ten seconds later, but not one second later. 
Mathematicians have found it advantageous to introduce 
the concept of a completely random continuous process,  
but it is hard to picture what such a process in nature  
might look like.

Systems that vary deterministically as time 
progresses, such as in mathematical models of the swinging 
pendulum, the rolling rock, and the breaking wave, and 
also systems that vary with an inconsequential amount of 
randomness – possibly a real pendulum, rock, or wave – 
are technically known as dynamical systems. At least in the 
case of the models, the state of the system may be speci-
fied by the numerical values of one or more variables – or 
the model pendulum, two variables – the position and 
speed of the bob will suffice; the speed is to be considered 
positive or negative, according to the direction in which 
the bob is currently moving. For the model rock, the posi-
tion and velocity are again required, but, if the model is to 
be more realistic, additional variables that specify the 
orientation and spin are needed. A breaking wave is so 
intricate that a fairly realistic model would have to possess 
dozens, or more likely hundreds, of variables.

Returning to chaos, we may describe it as behavior 
that is deterministic, or is nearly so if it occurs in a tangible 
system that possesses a slight amount of randomness, but 
does not look deterministic. This means that the present 
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state completely or almost completely determines the 
future, but does not appear to do so. How can determin-
istic behavior look random? If truly identical states do 
occur on two or more occasions, it is unlikely that the iden-
tical states that will necessarily follow will be perceived as 
being appreciably different. What can readily happen 
instead is that almost, but not quite, identical states occur-
ring on two occasions will appear to be just alike, while the 
states that follow, which need not be even nearly alike, will 
be observably different. In fact, in some dynamical systems 
it is normal for two almost identical states to be followed, 
after a sufficient time lapse, by two states bearing no more 
resemblance than two states chosen at random from a long 
sequence. Systems in which this is the case are said to be 
sensitively dependent on initial conditions. With a few more 
qualifications, to be considered presently, sensitive depend-
ence can serve as an acceptable definition of chaos, and it 
is the one that I shall choose.

“Initial conditions” need not be the ones that 
existed when a system was created. Often they are the 
conditions at the beginning of an experiment or a compu-
tation, but they may also be the ones at the beginning of 
any stretch of time that interests an investigator, so that 
one person’s initial conditions may be another’s midstream 
or final conditions. 

Sensitive dependence implies more than a mere 
increase in the difference between two states as each 
evolves with time. For example, there are deterministic 
systems in which an initial difference of one unit between 
two states will eventually increase to a hundred units, while 
an initial difference of a hundredth of a unit, or even a 
millionth of a unit, will eventually increase to a hundred 
units also, even though the latter increase will inevitably 
consume more time. There are other deterministic systems 

in which an initial difference of one unit will increase to 
a hundred units, but an initial difference of a hundredth 
of a unit will increase only to one unit. Systems of the 
former sort are regarded as chaotic, while those of the 
latter sort are not considered to constitute chaos, even 
though they share some of its properties.

Because chaos is deterministic, or nearly so, games 
of chance should not be expected to provide us with simple 
examples, but games that appear to involve chance ought 
to be able to take their place. Among the devices that can 
produce chaos, the one that is nearest of kin to the coin or 
the deck of cards may well be the pinball machine. It should 
be an old-fashioned one, with no filppers or flashing lights, 
and with nothing but simple pins to disturb the free roll 
of the ball until it scores or becomes dead.

One spring in the thirties, during my undergrad-
uate years at Dartmouth, a few pinball machines suddenly 
appeared in the local drugstores and eating places. Soon 
many students were occasionally winning, but more often 
losing, considerable numbers of nickels. Before long the 
town authorities decided that the machines violated the 
gambling laws and would have to be removed, but they 
were eventually persuaded, temporarily at least, that the 
machines were contests of skill rather than games of 
chance, and were therefore perfectly legal.

If this was indeed so, why didn’t the students 
perfect their skill and become regular winners? The reason 
was chaos. As counterparts of successive tosses of a coin or 
riffles of a deck, let the “events” be successive strikes on a 
pin. Let the outcome of an event consist of the particular 
pin that is struck, together with the direction from the pin 
to the center of the ball, and the velocity of the ball as it 
leaves the pin. Note that I am using velocity in the technical 
sense, to denote speed together with direction of motion, 
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just as position with respect to some reference point implies 
distance together with direction of displacement. 

Suppose that two balls depart one after the other 
from the same pin in slightly different directions. When 
the balls arrive at the next pin, their positions will be close 
together, compared to the distance between the pins, but 
not necessarily close, compared to the diameter of a ball. 
Thus, if one ball hits the pin squarely and rebounds in the 
direction from which it came, the other can strike it 
obliquely and rebound at right angles. This is approxi-
mately what happens in Figure 1, which shows the paths 
of the centers of two balls that have left the plunger of a 
pinball machine at nearly equal speeds. We see that the 
angle between two paths can easily increase tenfold when-
ever a pin is struck, until soon one ball will completely 
miss a pin that the other one hits. Thus a player will need 
to increase his or her control tenfold in order to strike one 
more pin along an intended pathway.

Of course, the pinball machine in Figure 1 is really 
a mathematical model, and the paths of the balls have been 
computed. The model has incorporated the decelerating 
effect of friction, along with a further loss of energy when-
ever a ball bounces from a pin or a side wall, but, in a real 
machine, a ball will generally acquire some side spin as it 
hits a pin, and this will alter the manner in which it will 
rebound from the next pin. It should not alter the conclu-
sion that the behavior is chaotic – that the path is sensi-
tively dependent on the initial speed.

Even so, the model as it stands fails in one respect 
to provide a perfect example of chaos, since the chaotic 
behavior ceases after the last pin is struck. If, for example, 
a particular ball hits only seven pins on its downward 
journey, a change of a millionth of a degree in its initial 
direction would amplify to ten degrees, but a change of a 

ten-millionth of a degree would reach only one degree. To 
satisfy all of the requirements for chaos, the machine would 
have to be infinitely long – a possibility in a model if not 
in reality – or else there would have to be some other means 
of keeping the ball in play forever. Any change in direc-
tion, even a millionth of a millionth of a degree, would then 
have the opportunity to amplify beyond ten degrees.

An immediate consequence of sensitive depend-
ence in any system is the impossibility of making perfect 
predictions, or even mediocre predictions sufficiently far 
into the future. This assertion presupposes that we cannot 
make measurements that are completely free of uncer-
tainty. We cannot estimate by eye, to the nearest tenth of 
a degree nor probably to the nearest degree, the direction 
in which a pinball is moving. This means that we cannot 
predict, to the nearest ten degrees, the ball’s direction after 
one or two strikes on a pin, so that we cannot even predict 
which pin will be the third or fourth to be struck. Sophis-
ticated electronic equipment might measure the direction 
to the nearest thousandth of a degree, but this would 
merely increase the range of predictability by two or three 
pins. As we shall see in a later chapter, sensitive depend-
ence is also the chief cause of our well-known failure to 
make nearly perfect weather forecasts.

I have mentioned two types of processes – those 
that advance step by step, like the arrangements of cards in 
a deck, and those that vary continuously, like the positions 
or speeds of cars on a highway. As dynamical systems, these 
types are by no means unrelated. The pinball game can 
serve to illustrate a fundamental connection between them.

Suppose that we observe 300 balls as they travel 
one by one through the machine. Let us construct a 
diagram containing 300 points. Each point will indicate 
the position of the centre of one ball when that ball strikes 
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its first pin. Let us subsequently construct a similar 
diagram for the second strike. The latter diagram may 
then be treated as a full-scale map of the former, although 
certainly a rather distorted map. A very closely spaced 
cluster of points in the first diagram may appear as a recog-
nizable cluster in the second. Dynamical systems that vary 
in discrete steps, like the pinball machine whose “events” 
are strikes on a pin, are technically known as mappings. 
The mathematical tool for handling a mapping is the differ-
ence equation. A system of difference equations amounts to 
a set of formulas that together express the values of all of 
the variables at the next step in terms of the values at the 
current step.

I have been treating the pinball game as a sequence 
of events, but of course the motion of a ball between strikes 
is as precisely governed by physical laws as are the rebounds 
when the strikes occur. So, for that matter, is the motion 
of a coin while it is in the air. Why should the latter process 
be randomness, while the former one is chaos? Between 
any two coin tosses there is human intervention, so that 
the outcome of one toss fails to determine the outcome of 
the next. As for the ball, the only human influence on its 
path occurs before the first pin is struck, unless the player 
has mastered the art of jiggling the machine without acti-
vating the tilt sign.

Since we can observe a ball between strikes, we 
have the option of plotting diagrams that show the posi-
tions of the centres of the 300 balls at a sequence of closely 
spaced times, say every fiftieth of a second, instead of only 
at moments of impact. Again each diagram will be a full-
scale map of the preceding one. Now, however, the prom-
inent features will be only slightly changed from one 
diagram to the next, and will appear to flow through the 
sequence. Dynamical systems that vary continuously, like FIGURE 1, THE PINBALL MACHINE
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If the pinball game is to chaos what the coin toss is to 
complete randomness, it has certainly not gained the popu-
larity as a symbol for chaos that the coin has enjoyed as a 
symbol for randomness. That distinction at present seems 
to be going to the butterfly, which has easily outdistanced 
any potential competitors since the appearance of James 
Gleick’s book, whose leading chapter is entitled “The 
Butterfly Effect.”

The expression has a somewhat cloudy history. It 
appears to have arisen following a paper that I presented 
at a meeting in Washington in 1972, entitled “Does the 
Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in 
Texas?” I avoided answering the question, but noted that 
if a single flap could lead to a tornado that would not other-
wise have formed, it could equally well prevent a tornado 
that would otherwise have formed. I noted also that a single 
flap would have no more effect on the weather than any 
flap of any other butterfly’s wings, not to mention the 
activities of other species, including our own. The paper 
is reproduced in its original form as Appendix 1.

The thing that has made the origin of the phrase 
a bit uncertain is a peculiarity of the first chaotic system 
that I studied in detail. Here an abbreviated graphical 
representation of a special collection of states known as a 
“strange attractor” was subsequently found to resemble a 
butterfly, and soon became known as the butterfly. In 
Figure 2 we see one butterfly; a representative of a closely 
related species appears on the inside cover of Gleick’s book. 
A number of people with whom I have talked have assumed 
that the butterfly effect was named after this attractor. 
Perhaps it was. 

Some correspondents have also called my atten-
tion to Ray Bradbury’s intriguing short story “A Sound of 
Thunder,” written long before the Washington meeting. 

the pendulum and the rolling rock, and evidently the 
pinball machine when a ball’s complete motion is consid-
ered, are technically known as flows. The mathematical 
tool for handling a flow is the differential equation. A system 
of differential equations amounts to a set of formulas that 
together express the rates at which all of the variables are 
currently changing, in terms of the current values of the 
variables.

When the pinball game is treated as a flow instead 
of a mapping, and a simple enough system of differential 
equations is used as a model, it may be possible to solve 
the equations. A complete solution will contain expres-
sions that give the values of the variables at any given time 
in terms of the values at any previous time. When the times 
are those of consecutive strikes on a pin, the expressions 
will amount to nothing more than a system of difference 
equations, which in this case will have been derived by 
solving the differential equations. Thus a mapping will 
have been derived from a flow. 

Indeed, we can create a mapping from any flow 
simply by observing the flow only at selected times. If there 
are no special events, like strikes on a pin, we can select 
the times as we wish – for instance, every hour on the hour. 
Very often, when the flow is defined by a set of differen-
tial equations, we lack a suitable means for solving them 
– some differential equations are intrinsically unsolvable. 
In this event, even though the difference equations of the 
associated mapping must exist as relationships, we cannot 
find out what they look like. For some real-world systems 
we even lack the knowledge needed to formulate the differ-
ential equations; can we honestly expect to write any equa-
tions that realistically describe surging waves, with all their 
bubbles and spray, being driven by a gusty wind against a 
rocky shore?
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Here the death of a prehistoric butterfly, and its conse-
quent failure to reproduce, change the outcome of a pres-
ent-day presidential election.

Before the Washington meeting I had sometimes 
used a seagull as a symbol for sensitive dependence. The 
switch to a butterfly was actually made by the session 
convenor, the meteorologist Philip Merilees, who was 
unable to check with me when he had to submit the 
program titles. Phil has recently assured me that he was 
not familiar with Bradbury’s story. Perhaps the butterfly, 
with its seeming frailty and lack of power, is a natural 
choice for a symbol of the small that can produce the great.

Other symbols have preceded the seagull. In 
George R. Stewart’s novel Storm, a copy of which my sister 
gave me for Christmas when she first learned that I was to 
become a meteorology student, a meteorologist recalls his 
professor’s remark that a man sneezing in China may set 
people to shovelling snow in New York. Stewart’s professor 
was simply echoing what some real-world meteorologists 
had been saying for many years, sometimes facetiously, 
sometimes seriously.

FIGURE 2, THE BUTTERFLY
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